Bound Free Pair Production in RHIC and LHC

<u>R. Bruce</u>, A. Drees, W. Fischer, S. Gilardoni, J.M. Jowett, S.R. Klein, S. Tepikian

Outline

- Bound Free Pair Production
- Measurements in RHIC
- Monitoring losses in the LHC
- Conclusion

Bound Free Pair Production (BFPP)

- EM process, takes place at the IP in ultraperipheral heavy ion collisions (large impact parameters)
- e+e- pair created by the field between the colliding nuclei
- As opposed to free pair production, the electron is created in an atomic shell of one of the ions

Schematic of reaction:

$$Z_1 + Z_2 \xrightarrow{\gamma} (Z_1 + e^-)_{1s_{1/2,\dots}} + Z_2 + e^+$$

Features of **BFPP**

- Affected particles emerge at a very small angle to the main beam (small transverse recoil)
- However, fractional deviation of the magnetic rigidity

 $\delta = 1/(Z-1)$

- BFPP particles follow the locally generated dispersion function from the IP
- Contributes to luminosity decay (Gould LBNL Report LBL-18593; Balz et al, Phys. Rev. E 54:4233)
- Might be lost in a welldefined spot – could possibly quench magnets (Klein, Nucl. Inst. Meth. A 459:51; Jowett et al, TPPB029 EPAC03, Jowett Chamonix 03)

Loss rate given by LO 2008-01-28 simplistic sketch with pure bending field

Nominal orbit

BFPP orbit

BFPP in the LHC

- σ=281 Barn for Pb⁸²⁺ operation at 2.76 TeV/nucleon, 281 kHz loss rate (*Meier et al, Phys. Rev. A 63:032713*)
- Hadronic cross section = 8 barn
- BFPP beam at IP2 lost in disp. suppressor dipole
- 25 W heating power
- Simulations: magnets are not likely to quench due to BFPP beam losses
- However, quench still possible within estimated uncertainties
 - Quench limit, Monte Carlo, BFPP cross section
- Good understanding (=benchmark) needed!

R. Bruce, S. Gilardoni, J.M. Jowett. Bfpp losses and quench limit for lhc magnets. *LHC Project Note 379, CERN,* 2006.

Outline

Bound Free Pair Production Measurements in RHIC (R. Bruce et al, Phys. Rev. Letters 99:144801, 2007) cross section, impact point experimental setup measured results, comparison with simulation Monitoring losses in the LHC Conclusion

RHIC accelerator complex

- Two storage rings called "blue" and "yellow", circumference 3.8 km
- Four experiments: STAR, PHENIX, BRAHMS, PHOBOS
- Collides mainly Au⁷⁹⁺ ions at 100 GeV/ nucleon, but has also operated with several other species
- BFPP experiments performed with Cu²⁹⁺ at 100 GeV/ nucleon

www.bnl.gov

BFPP at RHIC

	$\sigma_{\rm BFPP}$	$L/10^{27}$	BFPP	$\delta(\%)$
	(barn)	$(cm^{-2}s^{-1})$	rate (kHz)	
LHC Pb-Pb	281	1	281	1.2
2759 GeV/nucleon				
RHIC Au-Au	114	3	342	1.3
100 GeV/nucleon				
RHIC Cu-Cu	0.2	20	4	3.6
100 GeV/nucleon				
RHIC Cu-Cu	0.08	1	0.08	3.6
31 GeV/nucleon				

During Au⁷⁹⁺ operation, δ too small to form spot
 Cu²⁹⁺ operation at RHIC provides a good opportunity to measure BFPP
 Low rate isk for magnet quenches (4 mW heating power, 25 W in the LHC)

Cross section

 Interpolating data in Meier et al gives σ≈0.2 barn

 $\sigma_i \approx Z_1^5 Z_2^2 \left(A_i \log \gamma_{\rm cm} + B_i \right)$

$$\sigma_{\rm BFPP} = \sum_i \sigma_i$$

 Recent calculation gives
 σ=0.19 barn
 (Aste arXiv:0710.4305v2)

figure from Meier et al, Phys. Rev. A 63:032713

Impact point at RHIC

 Optics functions calculated by MAD-X
 Gives impact at 135.5 m from the PHENIX IP

2008-01-28

Roderik Bruce

10/332

Impact point (continued)

2008-01-28

Roderik Bruce

11/332

Elements around impact point

Experimental setup

- PIN diodes (PDs), Hamamatsu S3590, mounted on the outside of the magnets around expected impact point
- Silicon detector, sensitive to passage of MIPs
- Digitally counting number of particles
- PDs with 3 m spacing (wide conf.)
- later moved to 0.5 m spacing around observed max (close conf.)

Measured signals

- Measured PD signals well correlated with luminosity (proportional to ZDC) and localized along s
- Maximum in wide configuration found at 141.6 m from the IP, and at 140.5 m in the close configuration
- Signals measured in the range between 0 and 20 Hz

14/332

van der Meer scan

- orbits scanned transversely across each other at the IP by means of a variable orbit bump
- luminosity and PD signal recorded as a function of orbit bump amplitude
- Good correlation found
- Very unlikely that PD signals are caused by anything else than BFPP

2008-01-28

15/332

Shower simulations

- Ensembles of BFPP particles tracked until loss from the IP assuming a Gaussian distribution in betatron amplitudes
- Impact coordinates and momenta from MAD-X tracking recorded, fed as starting conditions to Monte-Carlo simulation of shower with FLUKA
- 3D geometry of magnets around impact implemented, including dipole field
- simulated PD signals recorded

Comparison of simulations and measurements

145 140 150

> measured signals averaged and normalized to typical luminosity of 9.1 x 10²⁷ cm⁻² s⁻¹

Error sources

- Uncertainty in closed on-momentum orbit
 - real orbit during measurements not well known, limited data available
 - Least squares fit to Beam Pos. Monitor data attempted using measured quad. displacements and corrector strengths
 - not successful, unless large displacements (~1mm) of quadrupole magnets allowed, then several possible fits
- Estimated orbit error can move BFPP impact point 2m
 Pollution by other losses, e.g. collimation
 - closnost data sate in the beginning of stores
 - cleanest data sets in the beginning of stores used
- Relatively few events (0-20 Hz)
- 0.01 MIPs entering PD per lost BFPP ion from shower simulation has a large uncertainty
- PD counting efficiency

Summary of measurements

First measurements ever of beam losses caused by BFPP

- Losses localized along s around predicted impact point
- High correlation with luminosity
- Agreement with simulations when taking into account estimated uncertainties

shows presence of beam losses caused by BFPP

 Unfortunately, uncertainties too large to make a meaningful estimate of the cross section

Reference: R. Bruce et al, Phys. Rev. Letters 99:144801 (2007)

Outline

- Introduction
- Bound Free Pair Production
- Measurements at RHIC
- Monitoring losses the LHC (LHC Project Note 402)
 - Beam loss monitor thresholds (general ion losses)
 - Monitor positions to survey BFPP losses
- Conclusion

Motivation

- Measurements show BFPP losses present in RHIC
 Earlier studies predict that BFPP induced heating brings magnets very near quench limit
 - These losses must be closely monitored in the LHC
- Question: Is the present beam loss monitor (BLM) system, designed for proton operation, sufficient?
 - type of monitor, threshold for beam emergency extraction
 - positions of monitors

Present BLM system

- Ionization chambers, 50cm long, filled with N₂
- Detect secondary charged particles emerging outside the cryostat

 Monitors foreseen at expected proton loss locations (mainly quadrupoles)

 Ratio between temperature in superconductors and BLM signal simulated for protons
 This ratio determines the beam abort threshold

Present BLM system (2)

Ion shower simulation

Simulated ratio between energy deposition in superconducting coil and simplified BLM in FLUKA
 3D model of an LHC dipole (including magn. field):

Roderik Bruce

2008-01-28

Results

- Generic loss represented by a "pencil beam" of Pb⁸²⁺ ions and protons at LHC energy
- General loss can be represented by a superposition of pencil beams
- Results show similar ratio for the two species
- The same thresholds for dumping the beam can be used

Why?

- Although Pb⁸²⁺ ions have larger ionization cross section (~82²), the hadr. shower dominates energy deposition
- clear difference in a thin slice around trace of lost particle
- Superconductors shielded by beam screen
- FLUKA simulations show that ions fragment fully before reaching the superconductors — shower from independent nucleons there, equivalent to proton loss

Tracking of BFPP ions in the LHC

BFPP ions tracked with MAD-X from every IP that might collide ions

ATLAS

ALICE

BFPP orbit oscillating with the dispersion function
 Fraction of the beam might be lost further downstream

Could be used to spread out the heat load

2008-01-28

Roderik Bruce

27/332

Tracking of BFPP ions in the LHC

optics from ALICE

orbits from ALICE:

2008-01-28

Monitor positions

- BFPP losses occur mainly in dipoles, where no BLM coverage is foreseen
- Sensitivity study shows that the impact point can move several metres, as in RHIC
- Proposed scheme with additional monitors for both beams downstream of ALICE, ATLAS and CMS
- Tight spacing between monitors of 1.5 m to ensure detection

Outline

- Introduction
- Bound Free Pair Production
- Measurements at RHIC
- Monitoring losses in the LHC
- Conclusion

Conclusions

- Measurements in RHIC show good evidence for the presence of beam losses caused by BFPP
- Simulations of losses agree with measurements within estimated error bars
- At the LHC, BFPP losses need to be closely monitored
- Positions of additional BLMs for this purpose are calculated
- The same beam abort thresholds as for protons can be used
- Future work: alleviation of BFPP in the LHC (orbit bump?)

Acknowledgements

We would like to thank the following people for valuable help:

 G. Bellodi, H.H. Braun, B. Dehning, A. Ferrari, R. Gupta, E.B. Holzer, J-B. Jeanneret, M. Magistris, L. Ponce, G. Smirnov.